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ABSTRACT 

The stability problem in solving numerically the equations 
of motion of discrete linear structures subjected to dyna-
mic loads is first discussed on a rigorous and complete 
basis in this paper. A correct stability criterion for the 
analysis of SDOF system and an equivalence theorem of 
stability for MDOF system are presented. Secondly, as an 
example of their applications, the stability of the New-
mark method has been studied in detail. Finally, the same 
problem in dynamic analysis of structures with piecewise 
linear force-displacement relationships is also discussed 
in brief. A related stability theorem is provided. 

INTRODUCTION  

As everyone knows, the dynamic analysis of structures has 
been playing a great role more and more in the contempo-
rary structural design. And one of the basic works of the 
analysis is to treat the mathematical model of descrete 
structures on computers. In linear case it is 

Ma 4-Cy -i-Kal — R (1) 

where M, C and K are the mass, damping and stiffness matri-
ces respectively of the structures with n degree of free-
dom and their elements are constants; a, v, and d are the 
acceleration, velocity and displacement vectors of the 
MDOF system respectively; R is the load vector. In addi-
tion, the damping matrix usually take the Rayleigh form 

C =1  c41 M I' 04a fc (2) 
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Here cot, and o are damping coefficients. 

Owing to the explicit reason, solving equations (1) 
requires the security of stability. (The initial condi-
tions needn't be written in the discussion of this paper.) 
And many researchers have been paying attention to this 
problem(1-4). In particular, the authors of Reference(1) 
fulfiled their discussion in a manner of direct analysis 
that is more adequate than the others (e.g., the differ- 
ence form). But refering to some presentations in the 
monograph (5) without taking notice of the applicable 
conditions, they introduced a faulty stability criterion 
in their paper. Having considered the importance of the 
stability problem, expecially in some engineering practice 
and research works, such as in dynamic structural identi-
fication, and that a perfect solution of this problem has 
not been got yet, it is necessary that a further research 
needs to be made carefully. 

This paper will present a correct stability criterion for 
the analysis of SDOF system and an equivalence theorem 
of stability for MDOF system. As an application of them, 
the Newmark (r,A) method is particularly studied and it 
is proved that the integration scheme of (1) formulated 
by the method is unconditionally stable if and only if 
2S 4= r ai 1/2. In addition, according to the necessity 
of these conditions it is possible to discuss the problem 
of its conditional stability completely. 

The stability problem in nonlinear dynamic analysis of 
structures is also discussed in brief in this paper. A 
theoretical result for the stability analysis in computa-
tions of elasto-plastic and/or nonlinear elastic dynamic 
response of structures whose elements are of piecewise 
linear force-displacement relationships is provided. It 
demonstrates that an unconditionally stable algorithm in 
linear case remains uncoditionally stable in these parti-
cular nonlinear cases under a certain condition. 

FURTHER DISCUSSION OF THE STABILITY IN LINEAR CASE  

This section is aimed at making a further research for 
the general problem of the stability in linear case on 
a rigorous and complete basis. 

First of all equations (1) can be transformed into the 
conanical form by the modal method: (Rayleigh damping 
matrix has been assumed). 

4- iC - 128  X = /Cr I  R (3) 

where 4  is the transformation matrix of the transformation 
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made 

d = X (4)  

and consists of the mode vectors ft (i =1, 2,..., n) of 
the undamped MDOF system corresponding to (1); M is a 
diagonal generalized mass matrix whose elements are 

=.T14 f: ( 4. 1, 
4C and -Ce° are both diagonal, whose elements are 2cOil; and 
c (i=1, 2, ;.., n), respectively (c.40,:, the circle fre-
quency, and s  , the damping ratio,, both corresponding 
to the above modes), and cdi and it obey the relations 

cd,  I  + C04.  

A 2 kJ,' 
( 4. ---- „I, 2, ps) (6) 

X, X and X are the generalized displacement, velocity and 
acceleration vectors corresponding to the mode matrix 45 . 

Now examining one of the uncoupled equations (3), for 
example, the ith, and after the subscript i is neglected, 
it is 

+2coi afx. =-- r (7) 

where r= fj$Zdt2d,4: . This is an equation of motion of 
SDOF system. There are many numerical procedures for solv-
ing equation(7). Here the following integration scheme of 
the single step direct methods is considered. It is of 
representative significance for making the stability 
analysis. 

51t-÷,st = A)74. +L (8) 

where X is a vectoo of components x , x andat; A is a 
matrix of order 3 whose elements include the parameters A) , 

and the integration step at and some specific para-
meters indroduced by the different methods, and A is known 
as the approximation operator; L is a vector of order 3 
whose components also include the above parameters, and 
it is called the load operator and matters nothing to the 
stability problem if the load duration is not infinite; t 
is a certain instant. 
From (8) we have 

= A (c-+ Et) +L rt#,t- (9) 

where is a vector of components e, e' and e. which 
represent the errors of 1 , 1. and ar , respectively (in-
cluding the error of the initial values as well as the 
round-off). Subtracting (8) from (9) we get 

(5)  
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-- A Et (10) 

In consequence we have 

C- 

where m is a positive integer. The meaning of the stabi-
lity refers to that the finite errors in (10) or (11) at 
the instant t will not be amplified or will remain bounded 
at the instant_t+lmAt after sufficient large m step cal-
cul ations. On the contrary the scheme will be called 
instable. Therefore the discussion for the stability of 
some integration scheme comes to examining the behavior 
of the corresponding A'w  for m -roe . By the way, because 
the load duration is finite in general, so we have 

)71-4(et4 Pa* = A 1st  L Ai g e•• L #r
et
412) 

where j is a certain number and all the r.6-4.4,,, . 
And then it can be seen that here the discussion for the 
bound of j.  is just that for ji . 

Having noticed the related theorems in linear algebra, it 
can be seen that here A must be similar to a Jordan matrix 
named its Jordan form. This Jordan matrix is determined 
uniquely by A except for the ordering of its Jordan sub-
matrices. That is, we have A = 10"1 JP, where J is the above 
Jordan matrix; P is a transformation matrix. In addition, 
we also know that the sufficient and necessary coditions 
making A similar to diagonal matrix are that all its 
elementary divisors are of degree 1. Thus taking no ac-
count of the concrete conditions of A, it is not perfect 
that Reference (1) recognized J as a diagonal matrix 
whose elements are the three eigenvalues XI , X, and A3  of 
A and consequently took 

f A) 4 l (13) 
where f (A) is the spectrum redius of A as the stability 
criterion to use. (It is easy to know that only in such 
a case that Jhas a diagonal matrix form there can be a 
result that P is composed of the crresponding eigenvectors. 
In general case the evaluation of P is complicated, but P 
has no influence on the stability analysis, thereby it 
needn't be evaluated.) In fact, A includes several para-
meters as mentioned above. Especially the variation ranges 
ofw and tit are very large. Therefore without analysis we 
cannot put aside the case that the values of these para-
meters enable A to have an elementary divisor of degree 
greater than unity. If the modulus of the eigenvalue 
corresponding to such a divisor is equal to one, then the 
condition (13) as a stability criterion will be at fault. 
This point can be seen in the following discussion. 
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From A = P-1 JP, we have Al"= p-/J*P. Therefore the original 
problem is converted into the examination of the behavior 
of this J i"for4w-soe. There are three phases to be studied: 

1. All the elementary divisors of A are of degree 1. In 
this phase J is a diagonal matrix, i.e., 

Al  
J= A (14) 

A3  

where there can be the equal among the three eigenvalues 
Ai , A, and A3. Explicitly, in this phase the stability 
condition is relation (13). 

2. A has a divisor of degree 2. In this phase J is of form 

g. A, (or J ={I A, ) (15) 
/ As A, 

 

where AI  and Xs  can also be the equal. In such a phase 
we have 

AT (or f. "wAr" AT 

Thus if ),\JJA,1 ,then the stability condition should 
be 

r (A) < I (17) 

whereas if IA.1<lAil, then the condition is the same as 
relation (13). 

( 18 ) 

2
1\71 

Consequently the stability condition is the same as (17). 

Reviewing the above, we can see that relation (13) is not 
the sufficient and necessary condition of the stability 
that Reference (1) mentioned and only is a necessary 
condition. A sufficient condition can be cited. That is 
relation (17). 

Az]
(16) 

3. The elementary divisor of A is an algebraic factor of 
degree 3. In this phase J becomes 

•\. 

J 
I A 
A1" 
)\I" 

and we have 

N" (19) 
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Up to now, we can write down the correct stability criter-
ion of the integration scheme (8). 

Theorem 1 (stability criterion). Let the approximation 
operator of the integration scheme for solving equation 
(7) be A. The integration scheme will be stable if one of 
the following three conditions is satisfied. 

1) All the elementory divisors of A are of degree 1 and 
relation (13) holds. 

2) Although A has an elementary divisor of degree 2, but 
the modulus of the eigenvalue corresponding to it is the 
smaller one and that relation (17) holds. 

3) The elementary divisors of A do not belong to the above 
two cases, but relation (17) holds. nd the integration 
scheme will be instable if the elementary divisors of A 
are in any other case. 

For convenience of applications an equivalence theorem of 
the stability for solving equations (1) will be presented 
as follows. 

Theorem 2. Suppose that equation (1) have been transformed 
into uncoupled equations (3) through relations (2), (5) 
and (6) and transformation (4). If an integration method 
with a selected step is stable to all the equations in 
equations (3), then the method with that step is stable 
to equations (1). Or else it is instable. 

For the proof of this theorem it is enough to notice the 
following two things. The first one is that the system of 
the mode vectors 90(i = 1, 2 n) is linearly independ- 
ent. Therefore in transformation (4) is invertible. In 
addition, there are connections in relations (2), (5) and 
(6). Consequently equations (1) are equivalent to equa-
tions (3). (If the initial conditions are written at the 
beginning of this paper, the corresponding two initial 
value problems will be equivalent all the same. ) The 
second is that the integration scheme formulated for (1) 
and (3) from the same integration method and step are 
also equivalent dut to the connection of transformation 
(4). The different point is merely that the latter appears 
in explicit form already (n matrix operation expressions 
like (8)), whereas the former is generally a system of 
linear algebraic equations to be solved for a certain kind 
of unknown quantities. Thus in the process of integration, 
the only thing to be done by the former too many by one 
than the latter is solving the algebraic equations and 
correspondently the only problem the former has too many by 
one than the latter is an error in solving the equations. 
However, such an error is just in the scope that the 
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stability take into account. Hence the results from (1) 
and (3) are the same as far as the stability of some 
integration method is concerned. 

STABILITY OF THE NEWMARK METHOD 

The stability problem of the Newmark ( ) method was 
investigated by many authors and some related results 
have been provided. For example, the unconditionally stable 
conditions are 2/3 .a•-• r?,---1/i (4). This section will present 
the same result, but there are two important points in the 
proof of this paper. The first one is that the proof is 
based on the correct stability criterion, consequently 
it is reliable. The second is that from the procedure of 
the proof we can see that the results presented are not 
only sufficient conditions but also necessary conditions 
of the unconditional stability. 

studying 

studying 

Now according to the related theorems in linear 
the Jordan form of A corresponding to 

method for solving equation (7) can be converted 
that of amatrix B similar to A. We can 

-N--1)At 2(l —e)P — — 2 I/ 

- /3) yrA - 2(/-,-)Y11 

±—(3— (+—(3)PP -2(/-1-)/34' 1-13,4-aPP  

algebra 
the Newmark 

into 
take 

(20)  

where 

(21)  
2. y 

r (22) 
- 

/ - 2.a-- ) —1- p (4-).eiti%  

(see Reference (1) ). Taking it into account that .ao, 
co70 and r?..r.o , and AA is a monotone function of At , 

it can be seen that the value ranges of and Y are 
o< ,t«vie and P,*0 , respectively. By way of some opera- 

tions it is known that B has a unique invarient factor of 
degree greater than zero. It is 

di (A)= A3  + (M42 2)A'-i- 0-20 '‘\ (23) 

(It is interesting that there is not the parameter (3 in 
this factor. ) Apparently > is an elementary divisor of B. 
It corresponds to the eigenvalue Ai a o . thereupon the 
matter which remains to be examined is the factorization of 
the quadratic expression 

() 7)\ )\ ( A4 2  P-- 2) )N ( I 2  4') (24) 
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There are three cases to be discussed. 

1. If /w .>q /44(;-+ i/2)/z4. , then the other two eigen- 
values of B are 

A 2 ,3= 1-1/4(--/-V2)/2 +mi 2 ifr-jr(r-0/z)/2 yri ll2(25) 

And then 1Aa.,11=--f1-av-(r-1/2)/43 1/2. It can be seen that if 
and only if 7!,* 1/2, the condition IA.,11* I holds. Notice 
that this case includes a particular example (r= I/2, A=1/4, 
r=o arid lAallA31- f ) which has been described in Refer-
ence (1), where the method of simply calculating the 
elgenvalues was used. Fortunately there Aaand A, correspond 
respectively to an elementary divisor different from each 
other. Consequently it does not result in any matter. 

2. If /A (r-i- 1/z)/z -PA,J , then B has an elementary 
divisor of degree2. It corresponds to a double eigenvaluie 

Aar= (—Hi/2 

It can be seen that if and only if 
tion 1A.I.ci holds. 

3. If /A 4C fp (r-ff/2)/2.-1, pf, then the other two eigen-
values of B are 

Az, 3 = I - E (r.+ 1/2)/z r.] f gp (r-i- 1/2)/2 -I- k11  H3 V: ( 2 7 ) 

In this case the problem depends on A3. ForIA3 1 s 1 to 
hold, that is, for 

Le(r+1/2)/2+0±{f lu (r+ I /z )/2 + - 1611 Is 2 

or 

—49 I-) 4 - l /z) t) -1-  2 o 

to hold, we require and only require the inequalities 
.213 V I,fz hold. 

Making a summary of the above three cases and according 
to Theorem 1, we can know first that for any at and 
any 4070 as well as any f  o the Newmark method is 
unconditionally stable for solving equation (7) if and 
only if 2(3 . Next according to Theorem 2 we 
also can know that Newmark's method is unconditionally 
stable for equations (1) if and only if 

2p y I/2 (30) 

Because other sufficient conditions of the unconditional 
stability have ever been got in the course of investiga-
ting the Newmark method, now it can be seen that the 
conditions (30) are already the ones which are impossibly 
improved due to their necessity. 

(26) 
(3 3I/4 , the condi- 

(28)  

(29)  
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The investigation for the conditionally stable conditions 
of the Newmark method is mainly to derive the upper limit 
formulae. The things we need to consider are in each above 
case, i.e., when the function 

•=" — /4  ( r-i• r/z)/2 y a (31) 

Or 

=--- (r-fri)2  ( cod Cr- +.) (w.t)+ (I-r)( 32) 

has the different value ranges (greater than, equal to or 
less than zero), the stability condition is satisfied and 
at the same time the corresponding unconditionally stable 
condition is destroyed. (In the third case the alternative 
or both are destroyed. ) After making the overall analysis 
we can get the complete results. Here we only cite the 
principal results for practical use (in the case o s cl ): 
For y<//2 , 
a) if 40 Cr-f-1/2,1 and o f < f. , then the 
stable condition is 

C4).6 t-)3 ( 33) 

b) if 4/3 ›.(y--4-1/ 2). and 10, t< i, then it is 

a" .0X-< "M iry I C t'") 3 3 
c) if 4(3=-- Cr-+//2Yand o s c J , then it is 

co es p'.‹ 111 C c4-'•5  A733 •)4 ] 

d) if -fp< (r-1-1/4)4  and o*t.<  J , then it is 

caex---< 40.1'n 2-3 2. )3I 
where 

= t4(3-  (r+ Va)` 3/2 (z -r )] J I/ z (37) 

t(4- -r) - 2  r (2(3 -r)--L1 /3 -(1-4 3112(38) 
-47 Elto - r÷-4.-)* 

(waZ);= 2 I/(+. - (39) 

ksa r>4. =, (I - 1")/ - a-)] (40) 

The stability problem encountered in nonlinear dynamic 
analysis of strucutres is a very difficult one in most 
cases. However, in some particular cases we may possibly 
get a few theoretical results. Here a problem in which the 
structural elements are of piecewise linear force-displace-
ment relationships is discussed. 

(34)  

(35)  

(36)  
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Under this kind of relationship a theoretical result can 
be provided as follows. 

Theorem 3. An unconditionally stable integration method 
for the dynamic analysis of linear MDOF structures remains 
unconditionally stable when it is applied in the elasto-
plastic or non-linear elastic dynamic analysis of MDOF 
structures whose elements are of piecewise linear force-
displacement relationships if the number of times of 
change of the working phase of the structures is finite 
in the whole response history. 

The proof of this theorem and some related problems will 
be reported in detail in another paper. 
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